
ISRAEL J O U R N A L  OF MATHEMATICS 114 (1999), 177-188 

INTEGRAL TRANSFORMS OF FUNCTIONS WITH THE 
DERIVATIVE IN A HALFPLANE 

BY 

S. PONNUSAMY 

Department of Mathematics, Indian Institute of Technology 
liT-Madras, Chennai 600 36, India 

e-mail: samy~iitm.ernet.in 

AND 

F.  RDNNING 

School of Teacher Education, S¢r-Trcndelag College 
N-7004 Trondheim, Norway 

e-mail: frode.ronning~alu.hist.no 

A B S T R A C T  

Let ~4 be the class of normalized analytic functions in the unit disk A and 
define the class 

"Pf~ = { f  E .41 3(~ E R I Re{ei°'(f'(z) - /3)} > 0, z E A } .  

For a function f E A the Alexander transform Fo is given by 

f Fo(z) = f(tz) dt. 
t 

Our main object is to establish a sharp relation between ~ and 3' such that 
f E P~ implies that F0 is starlike of order % 0 _< 3' -< 1/2. A corresponding 

result for the Libera transform F1 (z) = 2 Ju f~  f(tz)dt is also given. 

1. I n t r o d u c t i o n  a n d  m a i n  r e s u l t s  

Le t  ,4 be  t h e  class of  a n a l y t i c  func t ions  in t h e  un i t  d isk  A w i t h  t h e  n o r m a l i z a t i o n  

f ( 0 )  = i f ( 0 )  - 1 = 0. Def ine  t h e  classes 

Pf~ = { f E AI 3o~ E ~1 R e { e i ~ ( f ' (  z) - f l)} > 0, z E A }  
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and 

7)~ = { f  E .A 1 Re f'(z) >/3, z E A} .  

For a function f E A we define the integral transform 

1 

(1.1) Fc(z) = (c + 1) / tc-lf(tz)dt, c > -1 ,  

0 

often called the Bernardi transform. Denote by /(:, $~ and $ the subclasses 

of .4 containing functions that are convex, starlike of order 3' and univalent, 

respectively. A classical question is how the integral transform (1.1) acts on 

such properties as univalence and starlikeness. A very old result by Alexander 

[1] states that f E $~ ~ F0 E ]C, and much later Libera [7] proved that  

f E $~ ~ F1 E $~. On the other hand, it is known that there is a function in 

$ whose Alexander transform (c -- 0 in (1.1)) is not univalent [6], and the same 

is true for the Libera transform (c = 1) [3]. The condition R e f ' ( z )  > 0 implies 

univalence, but not starlikeness, as shown by an example in [5]. Therefore P0 ° is 

a subclass of $ not containing the starlike functions. However, Singh and Singh 

[17] proved that the Alexander transform of a function in ;Do ° is starlike, a result 

which later [18] was improved by the same authors to 

f E P°_a/4 ~ Fo E $~. 

We will work with the following problem. Find the smallest f~ = /3(c, 3') such 

that  

A number of authors have worked on this problem in various settings, and some 

non-sharp results can be found in e.g. [2, 8, 9, 10, 11, 12, 13]. For 7 = 0 and 

- 1  < c _< 2, the problem was solved by Fournier and Ruscheweyh [4] who found, 

e.g., the sharp value ~(0, 0) = 1 - (2 - 2 1 o g 2 )  -1 = -0.629 . . . .  Note that  the 

problem is stated in the larger class P~ instead of P~, which mostly has been the 

subject of earlier studies, but from our results it turns out that the same value of 

is sharp both in the smaller and the larger class. We prove the following main 

theorem. 

THEOREM 1.1: Let c > - 1  and fl = j3(c, 7) be defined by 

1 

(1.2) 1 - / J  [ 0 - - 7 - ) ~ i  ~tff) - 1 - 7 
0 
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Let 

For f E 7)Z we have 

1 

Fc(z) = (c + 1) f t c - l f ( t z )d t .  

0 

Fc E $~, 0 < ' 7 < 1 / 2 ,  when - 1  < c < O 

and 

Fc E S~, 0 _ < ' 7 <  1/4, when O < c <_ l. 

For c and 7 given, the value of/3 in (1.2) is sharp, and the extremal function is 

O 0  

f ( z )  = z + 2(1 -/3) Z zk /k  E 73~. 
k : 2  

COROLLARY 1.2: 

(1.3) 

Then 

The  values c = 0 and c = 1 correspond to the most interesting special cases of 

(1.1), the Alexander  and Libera  transforms, and therefore we state  these results 

separately with the value of/3 explicitly given. 

Let :3 < 1 and 0 <_ "7 <_ 1/2 be related by 

1 - ' 7  
=/~(V) = 1 - 2(1 - 3') - 21og2 + '7~-2/6" 

1 

/ • f E Pf~ ~ Fo(Z) : f ( t z )d t  E S~. 
t 

0 

The value of ~ in (1.3) is sharp. 

We remark  tha t  the sharp value of 13 tha t  is now available from Corollary 1.2 

improves several results in [15], but  we will not include these improvements  here. 

COROLLARY 1.3: Let/3 < 1 and 0 <_ "7 <_ 1/4 be related by 

1 - ' 7  
(1.4) ~ = p('7) -- 1 - 

(4 + 8'7) log 2 - (2 + 6"7)' 

Then 
1 

f E P~ ~ Fl(Z) = 2ff(tz)dt E S;~. 
0 

The  value of/~ in (1.4) is sharp. 



180 S. P O N N U S A M Y  AND F. RONNING Isr. J. Math .  

Remarks: The class S~/2 is particularly interesting because of the inclusion chain 

C S~/2 C S~ C S, and because S~/2 is the smallest class of functions starlike 

of order ~ that  contains tg. From Corollary 1.2 we get that for 

1 
(1.5) /3 _>/3(1/2) = 1 - 2 - 41og2 + 7r2/6 = -0.1463... 

we have 

f C ~P~ ~ Fo E S~/2. 

With /3  = /3(1/2) from (1.5) the class P~ will contain non-univalent functions, 

in particular functions that are not starlike. For such functions the Alexander 

transform will not give a convex function, but as we have seen, it will give a 

function that  is starlike of order 1/2. This result can therefore be used to generate 

functions that  are in S~/2 but not in ~.  

Proof of the theorem: Let 

(1.6) 
z 1 + 2-2"f ] 

h.y(z)= ( l - z )  2 , 0 < 7 < 1 ,  I x [ = l .  

Using duality theory for convolutions (see [16]) one can prove that for f E P~ we 

have _Pc E S~ if and only if 

1 

(1.7) f i c ( t ) ( i ~ e  h4tz) 1 - 7 ( 1 + t )  ) tz ( i - - ~ _ ~ - ) 2  dr>O, z e A ,  
0 

where 

f ~(1 - to), c > - 1 ,  c # 0, 
(1.8) At(t) 

log ~, c = O, 

and/3 is defined as in (1.2) [14, Corollary 2.2]. The proof of this equivalence rests 

upon two basic facts. First, it is so that 

F(z) h~(z) 
F E S.~ ¢=~ * 5 0 ,  z E A ,  

z z 

where h~ is as in (1.6) and * denotes the Hadamard product (convolution). 

Second, our functions Fc are obtained as linear integral transforms of functions 

in P~, and the class P~ is well suited for the duality theory because we can find 

simple test functions for this class. Using the Duality Principle the problem of 
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showing starlikeness of F~ can now be reduced to showing the inequality (1.7). In 

Lemma 2.1 we show that (1.7) indeed holds for all ~ C [0, 1/2] when -1  < c < 0, 

and in Lemma 2.2 we show that it holds for all ~/C [0, 1/4] when 0 < c < 1. For 

further details about this proof, and the duality theory in general, we refer to 

[4, 14, 161. 

To prove sharpness, let f(z) = z + 2(1 - f/) )-'~=2 zk/k" Then if(z) maps A 

onto the halfplane Rew > ~, and Fc(z) = z+2(1 - ~ ) ( c +  1) E~_2 zk/(k(c+k)) • 
The integral in (1.2) can be explicitly calculated, and doing that we get 

(1.9) 1--/~= [k("/'C)+ (C-1-1)(C+7) - - ~ ( 2 ) ) 1 - 1 '  

where ¢(x) = r ' ( x ) / r (~ )  and 

k(7, c) = 27c(c + 1)log2 - 27(c + i) - 2c(1 + "fc) 
(1 - -~)c: 

Writing 

/ k = 2 k ( c ~ - k ) - ~  = cYk ' c # 0 ,  

and using the two sums 

and 

" (-1)k - 1 - l o g 2  
k 

k=2 

E ( - 1 ) k  _ 1 l + c  
c + k  c + 1  - + - - 2  ¢ - ¢  

k = 2  

together with (1.9), we get after some calculation that for z = - 1  the expression 

zF~c(z)/Fc(z), c ~ 0, takes the value % The case c = 0 can be handled separately, 

giving the same result. | 

2. T h r e e  l e m m a s  

LEMMA 2.1: Let 0 <_ ~/ <_ 1/2 and 

h(z) = z  (1 + x+2z2~2"),- i z ) / ( 1 -  z) 2, 

Then, with At(t) as in (1.8), 

1 

0 

]xl = 1. 

1 - ~ ( 1 + t )  ) 
(i = ~  ~_ ~) 2 dt>_O 
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for a11 z E A and all c E ( -1 ,  0]. 

Proof: The  proof  follows much the same lines as the proof of Theorem 2.3 in 

[14]. Assume first tha t  c = 0, i.e. A0(t) = log( i / t ) .  When convenient we choose 

to write h(z) in the form 

1 [ z z 
h ( z ) -  l + i T  [ ( l - - z )  2 + i T l - z  

T E I1~. Then  we get 

3  ̀ ] 
+ 1 - ~ ~ ( 1  ' 

iT 1 ) 1 1 T 1 
= R e  1 + iT 1 - tz ~ + ~ R e ( 1  ---tz) 2 + 1 - ~ - ~ I m  (1 - tz) 2 

7 Re(1 _ tz) 2 + im(1 ---tz) 2 (2.2) + 

= g l  + u2 + u3 + 1 _--~(v4 + us). 

Our first task is to prove tha t  the left hand side of (2.1) is bounded from below. 

When  this is established we can restrict the investigation of (2.1) to [z[ = 1, 

z :fi 1, because of the minimum principle for harmonic functions. In [4] it is 

proved tha t  ] f~ log(1/t)Uidt] < oa, i = 1, 3, and that  f~ log(1/t)U2dt > O, so we 

only need to look at f~ log(1/t)Uidt for i = 4, 5. Let 

1 

/ tlogt(l__, 1 
a ( z )  = z t z ~ d t  = [log0 - z)  + Li~(z)] ,  

o 

where Li2(z) = 2k~=, zk /k  2. To prove that  f~ log(1/t)U~dt for i = 4, 5 is bounded 

from below it is enough to prove tha t  ReG(z)  and I m G ( z )  bo th  are bounded 

from above. We get 

R e G ( z )  < Re[log(1 - z)/z] + ~ <_ ~ - log2 
k = l  

and 
oo 1 ~r 7r 2 

Im G(z) <_ Im[log(1 - z)/z] + E -~ <- ~ + ~-.  
k = l  

Prom now on we can assume z = e i° in (2.1). Minimizing with respect  to  T 

(or x) we get 

Reh(tz)>tz 2 1 ( 2 3 '  t ) Re 2 - 23' + (23' - 1)tz 
- - ( 1 - t z )  2 ]l---tz[ 2 ' 
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so we have to prove 

1 

(2.3) l o g ~  Re 2 27 
(1 - t z ) 2  I1 - t z f  

o 

2:2%~+,)] 
( 1 + t ) 2  ]dt>_O 

for z = e ~°. We see tha t  we have equali ty in (2.3) for z = - 1 .  Wi th  y = cos0 

we can now write the integral in (2.3) in the following form, after pulling out  a 

factor  1 + y, 

fo l (Al(y,t) - 2~/d2(y,t))dt, H (~) (y) = t log 7 

where 
3 - 4(1 + y)t + 2(4y - 1)t 2 + 4(y - 1)t 3 - t 4 

di(y,t) = (1 + t 2 - 2y t )2 (1  + t) 2 

a n d  

Now we write 

1 - t  A2(y, t) 
(1 + t~ - 2~t)(1 + t )  

C,O 

H('~)(y) = Z ~ ' ~ ) ( l + y )  '~, LI+yl <2.  
k=0 

A calculat ion shows tha t  H~'~) is a positive mult iple of 

(2.4) 
1 

.i~) : f log ~(sk(t)- 2,~k(t))dt, 
0 

where 

(k + 3)t ~÷1 ( k - 1 t2 ~ 
(2.5) sk(t)-- ( l + t )  2k+4 1 - - 2 t +  k + 3  ] 

and 

tk+l 
(2.6) uk(t) - (1 + t) 2k+4 (1 - t2). 

Clearly H ('r) > H (1/2) := Hk, so (2.3) follows if we can prove tha t  Hk >_ 0, 

k = 0 , 1 , 2 , . . . . W e  now get 

(2.7) 

1 
H k  = / log ~1[ (k-{-2)tk+l-2(kq-3)$k+2-kktk+3 ] - ( 1  - ~ t V k - ~  dt 

o 

=(k + 2)J~ k) - 2(k + 3)j~ ~) + kj~ k), 
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(2.9) 

where 

where 
1 

2.8) j(k) - f ,og 1 t k+- t ( l + t )  2k+ndt' n = 1 , 2 , 3 .  
0 

An integration by parts in (2.8) shows that we can write 

j ( k ) _  k + n  T(k) 1 i(k) k + 3 > n ,  
kd-3---n "n-1 k + 3 - n  n-l,  

1 
t k + n  

(2.10) I(k) = / (1 q - ~  k+3dt" 
0 

From [14] we have the recursion formula for I (k) : 

- 1  k + n  i(k) k + 2 > n ,  
(2 .11)  I"(k) = (k + 2 - n)2 k+: + k -- n 

and by applying (2.9) and (2.11), the expression (2.7) reduces to 

k 2 + 2k + 3 2(k - 1) [(k) _ 2j(k) k > 1. 
Sk = k(k + 1)222k+2 -t- ~ - ~ ( ~ )  0 , - 

The change of variable tu -- 1 in I0 (k) and J(o k) yields 

/o(k) : / ~  uk+'du j~k)= f11~loguuk+2du 
1 (1 + u )  2k+3 and (1 + u )  2k+4 " 

From (2.7) we get directly that H0 = 1 /6 - ( log2) /6  > 0, and now the conclusion 

in the case c = 0 follows from Lemma 2.3. 

To handle the c < 0 case, we observe that sk(t) - 23'uk(t) has exactly one zero 

in (0, 1). Denote this zero by tk. Let 

(I)(t) = At(t) Ac(tk)A0(t) 
A(tk) ' 

with Ac(t) as in (1.8). It is easily seen that for - 1  < c < 0 the function 

Ac(t)/Ao(t) is decreasing on (0, 1). Therefore (I)(t) and sk(t) -- 2"~uk(t) have the 

same sign for every t E (0,1), which implies that 

1 

<_ / (~(t)(sk(t) - 27uk(t))dt 0 
0 

1 1 

= / Ac(t)(sk(t)-  2~/uk(t))dt Ac(tk) / Ao(tk) Ao(t)(sk(t) - 2~'uk(t))dt. 
0 0 

From this, the result for c < 0 follows immediately. | 
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LEMMA 2.2: Let 0 < 7 < 1/4 and 

h(z) = z  <l + X-2 -_ 2~ + 2 7 - 1 z )  / ( 1 -  z) 2, t x l = l .  

Then, with A¢(t) as in (1.8), 

(2.12) 

1 /Ac/ /(Roh/tz/ z 
o 

h - - -  ( 1 - 7 ) ( 1 + t )  2 ] d t > - 0  

for all z E A and a/ /c  E (0, 1]. 

Proof: The proof is similar to that of Lemma 2.1. Assume first that c = 1. We 

will start by proving that the left hand side of (2.12) is bounded from below, 

which means that  we have to look at f01(1 - t)Uidt for i = 4, 5 where Ui is as in 
(2.2). We define the function 

1 

( 1  - tz) 
o 

which can be written 

( z -  2) log(1  - z)  - 2z  
G(z)  = z2 

It is easily verified that the real and imaginary part of this function are both 

bounded from below, which is exactly what we wanted to prove. 

The same reasoning as in the previous proof gives the numbers corresponding 
to (2.4), 

1 

Hk('~) = / ( 1  - t)(sk(t) -- 27uk(t))dt, 
o 

with sk and uk as in (2.5) and (2.6). Again we have H (~) > H O/a) := Hk, and 

we get 

1 
f ~)t - 2(k + + (k 1 k+3 H k =  ( 1 - t ) ( k + 5  k+l 3)t k+2 - ~ ) t  

(1 + t )  2k+4 dt 
0 

=(k + ~)I~ k) - 2(k + 31I~ k) + (k - l~I(k) 
2 J 3  , 
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where I ,  (k) is as in (2.10). Using the recursion formula (2.11) we get 

7 + k 21 + 9k (k) 
Hk (k - 1)k(k + 1)22k+2 - (k -- ~)~-(~; 1) I1 ' k 2 , 3 , . . . .  

The value of I~ k) can be given explicitly as 

i~) = v~r(3 + k) 
22k+4(2 4- k~F( 5 _ j ~ + k ) '  

and we see that Hk > 0, k >_ 2, if and only if 

4(7 + k)F( 5 + k) 
qk := (21 + 9k)v~r(2 + k) > 1, k _> 2. 

Using F(k + 1) = kF(k) we find 

q k + l  _ (8 + k)(5  + 2]g)(7 + 3~;) 3k(1 + k) 
qk 2(10 + 3k)(2 + k)(7 + k) = 1 + 2(10 + 3k)(2 + k)(7 + k) > 1. 

105 Therefore qk+l > qk and since q2 = i-6~, we are done. Direct computation gives 

H0 = 95 + 42 log 2 31 = 0.009348... and H1 _ __167 1 log 2 = 0.001343... 
12 3 480 2 

so the proof is complete in the c = 1 case. For c c (0, 1), we copy the argument 

from the proof of Lemma 2.1, with the only difference that we now use that the 

function Ac(t)/Al(t) is decreasing on (0, 1) for c e (0, 1). | 

The only thing that now remains is to prove that the sequence hk presented 

at the end of the proof of Lemma 2.1 is positive. This is the content of the next 

temma. 

LEMMA 2.3: Define 

k2 + 2k + 3 k -  I f u k+l f ( l o g u ) u  k+2 
hk = k(k + l)222k+3 + k(k-+-l) (l + u) 2k+3du- (l + u) 2k+4du" 

1 1 

Then hk > 0 for k = 1 ,2 , . . . .  

Proof." We rewrite the second integral in the form 

~ (logu)u k+2 00 ( (1  + u) -(2k+a) 
(1+ u)2k+4d~ = f  (l°gu)uk+2d\ ~ - ~  ) 

_ 1 ((logu)uk+2~ ~ 
2 k + 3  \ ( l + u )  2k+3]1 

( (1  + ~t) -(2k-t-3) 
+ ~  \ ~-+3 ) {uk+l+(k+2)(l°gu)uk+i}du 

1 fl ~ u k+l k + 2  f ~  (logu)~ ~+1 
- 2 k  + a (1 + ,~):~+~ ~ + 2k +----5 g ~ d ~  

=L3 + L4. 
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We now write hk = L1 + L2 - L3 - L4, where 

( k - 1  1 ) ~  ~ u k+l 
r ~ - L z =  ~ - - 1 )  2k~-3 ( 1 ~ + 3  d~ 

k 2 - 3 f ~  U k+l 
= k ( k  A S i ) ( ~  + 3) (1 q- U) 2k+3 du'  

showing tha t  L2 - L3 > 0 for all k = 2, 3 , . . . .  One can directly verify tha t  hi > 0 

and therefore,  to comple te  the proof, it suffices to show tha t  L1 - L4 > 0 for all 

k > 2. Using the change of variable u = e ~, we find tha t  

k + 2 fo  °° xe (k+2)x 
L4 - 2 k + 3  (l +eX) 2 k + 3 d x -  - -  

k + 2 fo ~ x(e x/2 + e -z/2) 
< 2k +------3 (e-x~ 2 + ex/2) 2k+3 

k + 2 f ~  (e x/2 - e -x/2) 

< 2k + 3 Jo ( e-x~2 Jr- ex/2) 2k+2 

2(k + 2) / i  °° 1 
-- 2k + 3 . y2k+2 dy 

_ 2(k + 2) ( 
2 k + 3  

Now 

k + 2  fo ~ xeXf;/2)2k+3d x 
2k + 3 (e-~/2 + 

k + 2  fo  ~ x dx - 2k +--3 (e-X/2 + e~/2) 2k+2 

dx (since x < e x/2 - e - x / : )  

(with y = e -x/2  + e x/2) 

1 ) ~  2(k + 2) 
(2k + 3)y2k+3 = (2k + 3) 2 2 2k+3" 

2 

2(k + 2) 1 
< La (2k + 3) 2 2 2k+3 

because,  by the definition of L1, the above inequality is equivalent to 

2(k + 2) k z + 2k + 3 
< 

(2k + 3) 2 k(k + 1) 2 

dx 

which clearly holds for all k. II 
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